ELIZADE UNIVERSITY, ILARA-MOKIN, ONDO STATE.

FACULTY OF ENGINEERING Department of Electrical and Computer Engineering First Semester 2017/2018 Session Examination

COURSE TITLE: Digital Signal Processing

COURSE CODE: ECE 519

COURSE LECTURER: DR. A. M. JUBRIL

TIME ALLOWED: 3 HOURS

INSTRUCTIONS:

- 1. ANSWER FOUR QUESTIONS ONLY
- 2. SEVERE PENALTIES APPLY FOR MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORIZED MATERIALS DURING EXAM
- 3. YOU ARE NOT ALLOWED TO BORROW ANY WRITING MATERIALS DURING THE EXAMINATION

HODs SIGNATURE: -

1. (a) Consider the following length-7 sequences defined for $-3 \le n \le 3$: $x[n] = \{3, -2, 0, 1, 4, 5, 2\}, y[n] = \{0, 7, 1, -3, 4, 9, -2\}, w[n] = \{-5, 4, 3, 6, -5, 0, 1\}.$ Generate the following sequences:

i. u[n] = x[n] + y[n] (2 marks)

ii. $v[n] = x[n] \cdot w[n]$ (2 marks)

iii. r[n] = 3.2 x[n] (2 marks)

- (b) Determine the even and the odd parts of the sequences x[n], y[n] and w[n] in 1.(a). (4 marks)
- (c) Analyze the block diagram of the system in Figure 1 and develop a relation between x[n] and y[n]. (3 marks)

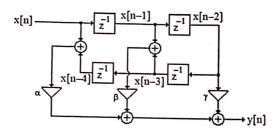


Figure 1:

- (d) Show that a causal real sequence x[n] can be fully recovered from its even part $x_{ev}[n]$ for all $n \geq 0$, whereas it can be recovered from its odd part $x_{od}[n]$ for all n > 0. (4 marks)
- (e) Determine the boundedness of the sequences $x[n] = A\alpha^n\mu[n]$ and $y[n] = 5\cos^3(\omega_o n^2)$, where A and α are complex numbers, and $|\alpha| < 1$ (3 marks)
- 2. (a) Let $x_{ev}[n]$ and $x_{od}[n]$ denote, respectively, the even and odd parts of a square-summable x[n]. Prove the following result:

$$\sum_{n=-\infty}^{\infty} x^2[n] = \sum_{n=-\infty}^{\infty} x_{ev}^2[n] + \sum_{n=-\infty}^{\infty} x_{od}^2[n]$$

(4 marks)

(b) Compute the energy of the length-N sequence

$$x[n] = \cos\left(\frac{2\pi kn}{N}\right)$$

(4 marks)

(c) The sequence of Fibonacci numbers f[n] is a causal sequence defined by

$$f[n] = f[n-1] + f[n-2], \qquad n \ge 2$$

with f[0] = 0 and f[1] = 1.

- i. Develop an exact formula to calculate f[n] directly for any n. (4 marks)
- ii. Show that f[n] is the impulse response of a causal linear timeinvariant system described by the difference equation

$$y[n] = y[n-1] + y[n-2] + x[n-1]$$

(4 marks)

(d) Determine the expression for the impulse response of the factor-of-3 linear interpolator given as

$$y[n] = x[n] + \frac{1}{3}(x[n-1] - x[n+2]) + \frac{2}{3}(x[n-2] - x[n+1])$$
(4 marks)

3. (a) Determine the DTFT of the causal sequence

$$A\alpha^n\cos(\omega_o n + \phi)\mu[n]$$

(5 marks)

(b) Determine the expression for the impulse response of the linear timeinvariant system in Figure 2. (4 marks)

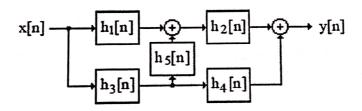


Figure 2:

- (c) Let $X(e^{j\omega})$ denotes the DTFT of a real sequence x[n]. Determine the inverse DTFT of the following in terms of x[n]:
 - i. $X_{re}(e^{j\omega})$ (2 marks)
 - ii. $jX_{im}(e^{j\omega})$ (2 marks)
- (d) Determine the DTFT of each of the following sequences:
 - i. $x_1[n] = \alpha^n \mu[n-1], \quad |\alpha| < 1$ (2 marks)
 - (2 marks)
 - ii. $x_2[n] = \alpha^n \mu[n], \quad |\alpha| < 1$ iii. $x_3[n] = \begin{cases} 1, & -N \le n \le N; \\ 0, & \text{otherwise.} \end{cases}$ (2 marks)

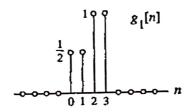


Figure 3:

- 4. (a) Let $G_1(e^{j\omega})$ denotes the discrete-time Fourier transform (DTFT) of the sequence $g_1[n]$ as shown in Figure 3. Evaluate $G_1(e^{j\omega})$. (5 marks)
 - (b) The discrete Fourier transform (DFT) pair is

$$X[k] = \sum_{n=0}^{N-1} x[n] \cdot e^{\frac{-j2\pi nk}{N}}$$

and

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] \cdot e^{\frac{-j2\pi nk}{N}} s$$

Determine the discrete Fourier series coefficient of the following periodic sequences:

- i. $x_1[n] = \cos(\pi n/4)$ (4.5 marks)
- ii. $x_2[n] = \sin(\pi n/3) + \cos(\pi n/4)$ (4.5 marks)
- (c) Let x[n], $0 \le n \le N-1$, be a length-N real sequence with an N-point DFT X[k], $0 \le k \le N-1$.
 - i. Show that $X[N-k] = X^*[k]$. (2 marks)
 - ii. Show that X[0] is real. (2 marks)
 - iii. If N is even, show that X[N/2] is real. (2 marks)
- 5. (a) Let g[n] and h[n] be two finite-length sequences given as

$$\{g[n]\} = \{-3, 2, 4\}, \qquad \{h[n]\} = \{2, -4, 0, 1\}$$

- i. Determine $y[n] = \sum_{n=-\infty}^{\infty} h[n-k]g[k]$ (3 marks)
- ii. Extend g[n] to a length-4 sequence $g_e[n]$ by zero-padding and compute $y_e[n] = \sum_{n=-\infty}^{\infty} h[n-k]g_e[k]$ (2 marks)
- (b) Consider up-sampling the sequence x[n] by an integer factor L > 1 to give a new sequence y[n], which implies that L 1 equidistance zero-valued samples are inserted between each consecutive samples of x[n],

 $y[n] = \begin{cases} x[n/L], & n = 0, L, 2L, ...; \\ 0, & \text{otherwise.} \end{cases}$

If the z-transform of x[n] is denoted as X(z), express Y(z) in terms of X(z). (4 marks)

- (c) Let X(z) denotes the z-transform of $x[n] = (0.4)^n \mu[n]$. Determine the inverse z-transform of $X(z^2)$. (5 marks)
- (d) A finite impulse response (FIR) linear time-invariant discrete-time is described by the difference

$$y[n] = a_1x[n+k] + a_2x[n+k-1] + a_3x[n+k-2] + a_2x[n+k-3] + a_1x[n+k-4]$$

where y[n] and x[n] denotes, respectively, the output and the input sequence. Determine the expression for its frequency response $H(e^{j\omega})$. For what values of the constant k will the system have a frequency response $H(e^{j\omega})$ that is real function of ω . (6 marks)

6. (a) Determine a closed-form expression for the frequency response $H(e^{j\omega})$ of the LTI discrete-time system characterized by an impulse response

$$h[n] = \delta[n] - \alpha \delta[n - n_o]$$

where $|\alpha| < 1$. What are the maximum and the minimum of its magnitude response. (7 marks)

(b) Determine a closed-form expression for the frequency response $H(e^{j\omega})$ of the LTI discrete-time system characterized by an impulse response

$$h[n] = g[n] \ast g[n] \ast g[n]$$

where $g[n] = \delta[n] - \alpha \delta[n - n_o]$ (5 marks)

(c) Determine the inverse discrete-time Fourier transform (DTFT) of the DTFT given as

$$H(e^{j\omega}) = 1 + 2\cos\omega + 3\cos2\omega$$

(8 marks)

Property	Sequence	z -Transform	ROC
	g[n] h[n]	G(z) H(z)	Re Rh
Conjugation	g*[n]	$G^{\dagger}(z^{*})$	$\mathcal{R}_{\mathbf{g}}$
Time-reversal	g[-n]	G(1/z)	1/R _x
Linearity	$\alpha g[n] + \beta h[n]$	$\alpha G(z) + \beta H(z)$	Includes $\mathcal{R}_{x} \cap \mathcal{R}_{h}$
Time-shifting	$g[n-n_o]$	$z^{-n_{\nu}}G(z)$	Rg, except possibly the point z = 0 or oo
Multiplication by an exponential sequence	α ⁿ g[n]	$G(z/\alpha)$	$ \alpha \mathcal{R}_{g}$
Differentiation of $G(z)$	ng[n]	$-z\frac{dG(z)}{dz}$	\mathcal{R}_g , except possibly the point $z = 0$ or ∞
Convolution	$g[n] \circledast h[n]$	G(z)H(z)	Includes $\mathcal{R}_g \cap \mathcal{R}_h$
Modulation	g[n]h[n]	$\frac{1}{2\pi j} \oint_C G(v) H(z/v) v^{-1} dv$	Includes $\mathcal{R}_{g}\mathcal{R}_{h}$
Parseval's relation		$\sum_{n=-\infty}^{\infty} g[n]h^*[n] = \frac{1}{2\pi J} \oint_C C$	$G(v)H^*(1/v^*)v^{-1}dv$

Note: If \mathcal{R}_g denotes the region $R_g - \langle |z| \rangle \langle R_g + |z| \rangle \langle R_g$

Table 3.2: General properties of the discrete-time Fourier transform of sequences.

Type of Property	Sequence	Discrete-Time Fourier Transform
	g[n] h[n]	G(e ^{jω}) H(e ^{jω})
Linearity	$\alpha g[n] + \beta h[n]$	$\alpha G(e^{j\omega}) + \beta H(e^{j\omega})$
Time-shifting	$g[n-n_o]$	$e^{-j\omega n_0}G(e^{j\omega})$
Frequency-shifting	$e^{j\omega_{\omega}n}g[n]$	$G\left(e^{j(\omega-\omega_{0})}\right)$
Differentiation in frequency	ng[n]	$j\frac{dG(e^{j\omega})}{d\omega}$
Convolution	$g[n] \bigoplus h[n]$	$G(e^{j\omega})H(e^{j\omega})$
Modulation	g[n]h[n]	$\frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\theta}) H(e^{j(\omega-\theta)}) d\theta$
Parseval's relation	$\sum_{n=-\infty}^{\infty} g[n]h^*[n]$	$a_{0}^{n} = \frac{1}{2\pi} \int_{-\pi}^{\pi} G(e^{j\omega}) H^{*}(e^{j\omega}) d\omega$